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List of Abbreviations

NL natural language (e.g., English or German)
NLU natural language utterance (e.g., a sentence, a question, or a command)

MRL meaning representation language, a formal language (e.g., the lambda
calculus or SQL)

MR meaning representation (e.g. a first-order logic formula or an SQL query)

1 Introduction

A semantic parser is a program that automatically translates natural-language
utterances (NLUs) to formal meaning representations (MRs) that a computer
can execute. For example, the NLU in (1-a) is a question that might be posed
to a geographical information system. A semantic parser could translate it into
an MR such as (1-b), which can just be run against a suitable (Prolog) database
to produce the answer.

) a. Give me the cities in Virginia.



b. answer(A, (city(A), loc(A, B), const(B, stateid(virginia
))))

A traditional way to create a semantic parser is to write a program that trans-
forms NLUs (or syntactic parse trees of them) into MRs according to rules.
However, writing such rules is complicated and requires special skills. And
even if the subject domain of the desired parser is quite limited (e.g., to U.S.
geography), many rules will be needed. This is because of the great variability
of natural language. Every MR usually has many ways it could be phrased in
natural language. For example, (2-a—c) should all map to (2-d):

2) What'’s the population of Alabama?
How many people live in Alabama?
How many citizens in Alabama?

answer (A, (population(B, A), const(B, stateid(alabama)))
)

an o

We therefore want computers to learn the rules needed to transform NLUs into
MRs by themselves—from examples such as those shown in (1) and (2). This is
also referred to as semantic parser learning. This is the kind of semantic parsing
we will explore in this seminar.

2 Characteristics of a Semantic Parser

Semantic parsers differ in their target applications and techniques. Specifically,
they differ in the following respects:

1. NLU representation—the form in which NLUs are fed into the parser

2. MRL—the formal language that the parser outputs

3. data—the amount and level of detail of training data that the parser needs
4

. lexicon representation—in what format the parser associates words (and
multiword expressions) with partial MRs

5. candidate lexicon generation—how the parser goes about creating such
an association

6. parsing algorithm—how the parser goes about transforming an NLU into
an MR

7. features—what kinds of features the parser uses to guide the parsing al-
gorithm towards the correct solution

8. model—how the parser uses the features to determine the correct deci-
sions

9. learning algorithm—how the parser learns the model and refines the can-
didate lexicon into a more accurate lexicon

10. experimental setup—how the parser is trained and tested (not strictly part
of the parser itself, but of the research for creating it)
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Figure 1: Characteristics of a semantic parser. An arrow pointing from A to B
means that A should be understood first to understand B.



11. evaluation metric—how the output of the parser is scored for correctness
(not strictly part of the parser itself, but of the research for creating it)

Figure|1|shows how these topics build on each other. In the following sec-
tions, we will discuss them one by one. As an example, we will introduce a
simple semantic parser called GEOPAlﬂ which deals with geographical queries
as shown in [(I1)|and For each topic, Georar will take one of the simplest
possible approaches. We will also point to other possible approaches in each
section.

2.1 NLU Representation

Georar will take queries as input simply as lists of lower-cased tokens. For
example (in Prolog format):

what,is,the,capital,of,the,state,with,the,largest,
3 [wh i h pital,of,th ith,the,larg
population,?]

Other Possibilities

Instead of just giving the parser the tokens, one might pre-process them to add
part-of-speech tags and/or word vectors (also called word embeddings). With
part-of-speech tags, the parser would know, e.g., that of and in are both prepo-
sitions, and could more easily learn that they have similar properties. Similarly,
word vectors allow the parser to recognize similarities between words (such as
in and of, king and queen), but they capture more similarities and more fine-
grained simﬂaritiesE]

22 MRL

Georar will produce queries in the GEoQuery query language, introduced by
Zelle and Mooney| (1996). The GEoQUuEry representation of the question in (3)
is:

4) answer (C, (capital(C), loc(C, S), largest(P, (state(S),
population(S, P)))))

Every query has the form answer(_, _). The first argument is a variable that
stands for the answer that a geographical information system asked that query
would be expected to give. The second argument consists of constraints im-
posed on that entity: it should be a capital (capital(C)), it should be located
in 8 (Loc(C, S)), and that S should be the state with the largest population
(largest (P, (state(S), population(S, P)))). For further details on Geo-
QUuERry, see|Zelle and Mooney| (1996), pp. 1052 ff.

Your task during the practical sessions of this course will be to implement and then extend
GEOPAR.

20ne good Python library for assigning part-of-speech tags and word vectors to tokens (among
other things) is spaCy (https://spacy.io).


https://spacy.io

Other Possibilities

Restricted to factoid questions about United States geography, GEOQUERYy is a
simple MRL that was primarily used as a benchmark in the early years of se-
mantic parsing research. Similar MRLs include Aris for queries on flight in-
formation (Price} [1990; Bates et al., [1990) and CLaNG for instructions to robotic
soccer players (Kate et al,2005). Here is an example of an NLU paired with an
Aris MR, adapted from [Papineni et al.| (1997):

(5) a.  What are the least expensive flights from Baltimore to Seattle?
b.  LIST FLIGHTS CHEAPEST FROM:CITY BALTIMORE TO:CITY SEATTLE

As the state of the art progressed, semantic parsers were developed that used
query languages with much larger vocabularies, suitable for querying large,
general knowledge bases such as Freebase (Krishnamurthy and Mitchell, 2012).
Most recently, semantic parsers are being developed that produce complex mean-
ing representations intended to capture the meaning of arbitary sentences and
texts. Examples of such MRLs are Discourse Representation Structures (Kamp),
1984; Kamp and Reyle, [1993; Bos et al., 2017; |Abzianidze et al.,2017) and Ab-
stract Meaning Representations (Banarescu et al.,2013). (6-a) shows an example
NLU, (6-b) shows a corresponding DRS, and (6-c) shows a corresponding AMR
(adapted from Bjerva et al.|(2016):

(6) a. Allequipment will be completely manufactured.

el sl
manufacture.v.01(el)
b. x1
- = | Manner(el, s1)
equipment.n.01(x1) Result(el, x1)
complete.r.01(s1)

equipment complete-02

nstance

all

2.3 Data

Semantic parsers learn how to translate NLUs into MRs. They do this by look-
ing at examples, called the training data. In many cases, this data consists simply
of example NLUs paired with the correct resulting MR (manually created). For
example:



(7) parse([what,is,the,capital,of,the,state,with,the,largest,
population,?], answer(A, (capital(A),loc(A,B),largest(C,(
state(B) ,population(B,C))))).

Other Possibilities

Producing an MR is not the end goal for any semantic parser. Oftentimes,
the MR is just a query that is sent to a database or other information system
to find the answer to the question. It therefore makes sense to say “I don't
care what MR the parser produces, so long as the database gives back the cor-
rect answer when fed the MR.” (The correct answer, in our example, would be
cityid(sacramento, ca).)

Accordingly, some semantic parsers do not require gold-standard meaning
representations in the training data. They are just given the correct answers
and access to the database and learn to produce meaning representations that
yield the desired answers. This approach is also called weakly supervised seman-
tic parsing and was pioneered by |Clarke et al.| (2010) and |Liang et al,| (2011). Its
most important advantage is that it is much easier to create training data this
way, since it can be done by people without specialized knowledge about MRs.
A disadvantage is that learning becomes more difficult, because the parser has
less information to go by and so has to try out many different possibilities. Nev-
ertheless, weakly supervised learning has turned out to work very well for small
domains such as GEOQUERY.

There are approaches to learning semantic parsers with even less explicit
training data, where only the database and example NLUs are given, with no
answers. This is called unsupervised semantic parsing (Poon and Domingos,[2009;
Goldwasser et al.,[2011)). It must be combined with advanced methods for can-
didate lexicon generation (see below) to be effective.

Yet another form of supervision is cross-lingual supervision, applicable when
a semantic parser for, say, English already exists and a new semantic parser
for, say, Dutch should be learned. This approach also assumes the existence of
a parallel corpus (i.e., sentences paired with their translations). The training
data for the new parser is then generated using the existing parser (Evang and
Bos), 2016)).

2.4 Evaluation Metric

An evaluation metric for semantic parsing is a function that compares a gold
MR with the MR produced by a semantic parser and outputs some number
between 0 and 1 saying how close the parser came to being correct. When aver-
aged over a representative collection of NLU-MR pairs, an evaluation metric can
be used to compare the performance of semantic parsers, and to check whether
any particular change made to a semantic parser during development hurt or
improved its performance.

The simplest evaluation metric, called exact match, simply returns 1 if the
MRs are the same, and 0 otherwise. This is the metric we will initially be using
to evaluate GEOPAR.



Other Possibilities

The exact match metric is sometimes problematic, because some differences
don’t matter, such as the order of subformulas in conjunctions. For example,
the following two MRs are logically equivalent:

(8) a. answer(C, (capital(C), loc(C, S), largest(P, (state(S),
population(S, P)))))

b. answer(C, (loc(C, S), capital(C), largest(P, (state(S),
population(S, P)))))

Thus, evaluation metrics are sometimes designed to ignore such differences.

Another possibility is in-vivo evaluation. Similarly to the argument made
above for training data, we may not care about the MR itself, but about the
result when feeding it into an information system. Thus, semantic parsers can
also be evaluated purely by whether the correct answer results.

For more complex meaning representations, parsers are usually assigned
partial credit if they don’t get the whole MR right but some of its substructures.
An example of such a metric is the SmarcH metric for Abstract Meaning Repre-
sentations (Cai and Knight, [2013).

2.5 Lexicon Representation

Words. They mean things.

The Linguist Llama

One of the most important things a semantic parser needs to learn is what
individual words mean (lexicon learning). A word, after all, can make all the
difference in meaning to an NLU—for example:

(9) a. Give me the cities in Virginia.
b. answer(A, (city(A),loc(A,B),const(B,stateid(virginia))))
(10) a. Give me the rivers in Virginia.
b. answer(4A, (river(A),loc(A,B),const(B,stateid(virginia)))

)

One of the design decisions when creating a semantic parser is how to represent
the meanings of individual words, called lexical MRs or lexical semantics. The
possible choices depend on the MRL. For Geopar, we define the possible lexical
MRs to be

1. complex terms with functor name const and two arguments, the first be-
ing a variable and the second a term that represents an individual entity.
For example:

e const(_,stateid(virginia))
e const(_,riverid(mississippi))
e const(_,cityid(austin, texas))

2. complex terms with other functor names where all arguments are vari-
ables. For example:



city (L)
e loc(_,_)
e river(_)

e largest(_,_)

As in Prolog, we use the underscore to represent variables that only occur
once. For example, in 1oc(_,_), the two variables are different. It will be the
task of the parsing algorithm to assemble lexical MRs into full MRs and to create
the appropriate variable bindings in the process.

A lexicon is then a set of lexicon entries W + M where W is a list of one or
more NL words and M is a lexical MR. For example, a minimal lexicon to parse
the examples (9) and (10) could look like thisﬂ

(11) { [cities]tcity( ), [riversltriver( ), [inlFloc(_,_),
[virginiall-const(_,stateid(virginia)) }

Sometimes it makes sense to associate more than one NL word with a lexical
MR—for example, when several NL words are used to express a concept that
has a single symbol in the MRL, or in the case of names that consist of more
than one word. Consider the following example:

(12) a. How big is New Mexico?
b. answer(A, (size(B,A),const(B,stateid(’new mexico?’))))

Here are some lexical entries that a semantic parser might sensibly learn. Some
of them are multiword lexical entries:

(13) a. [biglksize(_,_)

b. [how,biglksize(_,_)

c. [how,big,is]Fsize(_,_)

d. [new,mexicoltconst(_,stateid(’new mexico’))
Other Possibilities

Many semantic parsers use the lambda calculus to represent both full MRs and
lexical MRs. Like our lexical MRs above, lambda terms have variables where
terms coming from other lexical entries can be “filled in”. Unlike our lexical
MRs above, lambda terms have prefixes that specify explicitly which variables
these are and in which order they should be filled in.

Here is an example NLU-MR pair from Zettlemoyer and Collins| (2005):

(14) a. What states border Texas?
b.  Az.(state(x) A borders(zx, texas))

Their semantic parser uses the following lexical entries to parse this example:

(15) What - Af Ag. z.(f(x) A g(2))
states - Az.state(x)
border - \x.Ay.borders(y, x)

Texas - texas

oo we

3Every GEoQuEerY MR is wrapped in answer (_, _), so we don't treat this as a lexical MR.



Alambda term Az.P can be seen as a function with a parameter z which, when
given an argument, returns P with z replaced by that argument. Thus, when
we apply the lexical MRs above to each other in the right order, we get the full
MR:

AfAgAz.(f(z) A g(a))(Ax.state(x)) = Ag.Ax.(state(x) A g(x))
Az Ay.borders(y, x)(texas) = Ay.borders(y, texas)
Ag-Az.(state(z) A g(x))(Ay.borders(y, texas)) = Ax.(state(x) A borders(z, tezas))

2.6 Candidate Lexicon Generation

As already hinted at above, a semantic parser has two main learning tasks:

1. Lexicon learning: how to map words to lexical MRs.

2. Parser learning: how to assemble the lexical MRs of an NLU into a full
MR.

These two tasks are intertwined, because you can't parse unless you have
a lexicon, and you don’t know which lexical entries are correct unless you use
them for parsing, at which point you see whether you end up with the correct
full MR.

A common strategy to overcome this catch-22 is to first generate a candidate
lexicon which hopefully contains all correct lexical entries, but also many incor-
rect ones. The parser then first uses this candidate lexicon to parse. By com-
paring the results to the gold standard MRs in the training data, it can learn not
only how to assemble MRs, but also which lexical entries to use at all.

Since the vocabulary of GEoQUERYy is very small, to simplify things, we will
first equip Geopar with a hand-written lexicon. Later in the course, we will
consider automatic approaches to candidate lexicon generation.

Other Possibilities

Most approaches to candidate lexicon generation exploit co-occurrence infor-
mation. Consider this small corpus:

(16) a. Whatis the smallest state?

b. answer(S, (smallest(S,state(S)))
(17)  a.  Whatis the largest state?

b. answer(S, (largest(S,state(8)))

Looking atjust (16), a semantic parser could not know that smallest means smallest
(_,_) and state means state(_) and not the other way round. But looking at
both (16) and (17), it can notice that the NL word state appears in both NLUs,
and the lexical MR state(_) appears in both MRs. This is a clue that they
should be associated. Many semantic parsers use unsupervised word alignment
techniques originally developed for machine translation to figure out correla-
tions and likely associations between words and lexical MRs, and generate a
candidate lexicon from that.



The candidate lexical MRs are extracted from the MRs in the training data.
For Georar, we assume that lexical MRs always follow one of the two forms
specified above, so they are easy enough to extract from the full MRs. Parsers
that use the lambda calculus have a bit more work to do. There are two main ap-
proaches here: lexical lambda-terms can be extracted using hand-written tem-
plates (Zettlemoyer and Collins, 2005} 2007) or found by recursively splitting
the full MR into smaller parts (Kwiatkowksi et al., 2010; Kwiatkowski et al.,
2011). In the case of cross-lingual semantic parsing, lexical MRs are transferred
from the source-language lexical entries to the target-language words (Evang
and Bos|, 2016).

For scaling semantic parsers to vocabularies larger than GEoQuery, there is
rarely enough training data to learn all lexical entries directly from it. Instead,
there is much work on filling gaps in the lexicon by looking at databases and
unannotated text (Krishnamurthy and Mitchell, 2012} (Cai and Yates| [2013b}a;
Berant et al) |2013; Kwiatkowski et al} [2013; Reddy et al., 2014; [Wang et al.,
2015).

2.7 Parsing Algorithm

Once a (candidate) lexicon exists, a parsing algorithm is needed to get from a
list of words to a full MR. GEOPAR, like many parsers today, will use a transition-
based (also called shift-reduce) parsing algorithm. Transition-based algorithms
work “from left to right”, processing the words of the NLU in order and inte-
grating the lexical MRs of new words into the whole MR as soon as possible.

The parser uses a special data structure, called parse item. A parse item is a
triple (S, @, F'). S is called the stack and @ is called the queue. F is 0 or 1, indi-
cating whether the item is “finished”. The queue initially contains the whole
NLU to parse. The parsing process consists in removing words from the queue
one by one, putting their lexical MRs onto the stack and building up the full
MR on the stack, step by step.

Parsing starts with the initial item. The initial item has a stack with one ele-
ment (answer (_, _)) and the whole NLU in the queue. The parser then executes
a series of actions until it arrives at a finished item, with the queue empty and
a single element on the stack, which is the final MR. There are seven kinds of
actions, given a lexicon L:

e suIFT: remove the first N words from the queue, find a lexicon entry for
these words and put the lexical MR on top of the stack.

e skip: remove the first word from the queue. Used primarily for words that
don't have a lexicon entry, e.g., articles.

e COREF: create a variable binding between the top two elements of the stack.
e DrOP: embed the topmost stack element into the second-topmost one.
e LIrT: embed the second-topmost stack element into the topmost one.

e rINIsH: only applies to items with an empty queue and a single element
on the stack. Change F' from 0 to 1, marking the item as finished.

e LE: only applies to finished items. Does not change anything.

10



Action Parse item

((answer(_,_)), (what, is, the, capital, of, the, state, with, the, largest, population),0)
skip  ((answer(_,_)), (is, the, capital, of, the, state, with, the, largest, population),0)
skip  ((answer(_,_)), (the, capital,of, the, state, with, the, largest, population),0)
skip  ((answer(_,_)), (capital, of, the, state,with, the, largest, population),0)

sHIFT-1-capital(_,_) ((answer(_,_),capital(_,_)), (of,the,state, with, the, largest,population),0)
corer-[1]-[2]  ((answer(C,_), capital(_,C)), (of,the, state, with, the, largest, population),0)
pror-[2]  ((answer(C,capital(_,C))), (of,the, state, with, the, largest, population),0)
skip  ((answer(C,capital(_, C))) (the, state, with, the, largest, population),0)
skip  ((answer(C,capital(_,C))), (state, with, the, largest, population),0)
sHIFT-1-state(_) ((answer(C,capital(_,C)),state(_)), (with, the, largest, population),0)
COREF-[2,1]-[1]  ((answer(C,capital(S,C)), state(S)), (with, the, largest, population),0)
skir  ((answer(C,capital(S,C)), state(S)), (the, largest, population),0)
skip  ((answer(C,capital(S,C)),state(S)), (largest, population),0)
sHIFT-1-largest(_,_) ((answer(C,capital(S,C)),state(S),largest(_,_)), (population),0)
LiF-2]  ((answer(C,capital(S,C)), largest(_,state(S))), (population),0)
sHIFT-1-population(_,_) ((answer(C,capital(S,C)),largest(_,state(S)), population(_,_)),(),0)
COREF-[2,1]-[1]  ((answer(C,capital(S,C)), largest(_,state(S)), population(s,_)),(),0)
corer-[1]-[2]  ((answer(C,capital(S,C)), largest(P,state(S)), population(s,P)), (), 0)
prop-[2]  ((answer(C,capital(S,C)), largest(P, (state(S),population(s,P)))), (),0)
prop-[2]  ((answer(C, (capital(S,C),largest(P, (state(S), population(S,P)))))), (),0)
FINISH  ((answer(C, (capital(S,C),largest(P, (state(S), population(s,P)))))), (), 1)
bLE  ((answer(C, (capital(S,C),largest(P, (state(S), population(s,P)))))), (), 1)

Table 1: An example parsing process.

COREF, DROP, and LIFT can operate not only on the two topmost terms, but also
on subterms. For this purpose, they have lists of argument numbers as argu-
ments. For example, corer-[2, 1]-[1] means: create a variable binding between
the first argument of the second argument of the second-topmost stack element,
and the first argument of the topmost stack element. And prop-[2] means: drop
the topmost stack element into the second argument o the second-topmost stack
element.

Table[T]shows the parsing process for one sentence.

When parsing new NLUs (outside the training data), GEorar will not nec-
essarily know which action is the right action to take at each step. For example,
when the word mississippi is at the front of the queue, should the action sHiFr-
const(_,stateid(mississippi)) or sHiFT-const(_,riverid(mississippi)) be
used? To allow for some (temporary) error, we will use beam search. That is, at
each step, the parser will apply every possible action, resulting in many alter-
native new parse items. Of these new parse items, only the (say) 10 with the
highest scores are kept. They make up the beam. In the next step, every possible
action is applied to every item in the beam. Many new items result, and again
only the 10 with the highest scores are kept, making up the beam for the next
step. And so on, until all items in the beam are finished. (This is the reason
why we have LE: so that finished items can be kept in the beam while others
are still unfinished.)

What are “scores” of parse items? We will see in the next section.

Other Possibilities

Instead of a transition-based algorithm, some semantic parsers use a chart-
based algorithm such as CKY. Instead of from left to right, chart-based algo-
rithms work from bottom to top, building MRs for smaller parts of the NLU
first, then for larger parts, and finally for the whole NLU. Transition-based al-
gorithms tend to be favored today because they work in linear time, are just

11



as performant, arguably conceptually simpler and more flexible, and they are
more similar to how the human brain (the best known semantic parser) pro-
cesses sentences: starting with the first word and starting to interpret stuff even
before the sentence is fully spoken.

2.8 Features and Model

Because our lexicon and parsing actions typically allow for more than one possi-
ble action at each step, the parser needs some way of comparing different parse
items to each other and determining which is the most likely to be correct. We
do this by assigning each parse item a score, which is simply a number—the
higher it is, the more convinced the parser is the item is correct. The score is
computed by looking at a number of binary features of the parse item. Each
feature is a simple statement about a parse item which is either true or false.
Some features that are true of the fourth parse item in Table|l|are:

(18) The first word in the queue is capital.
The second word in the queue is of.

The last action was skip.

The last processed word was the.

The second-to-last processed word was is.
The predicate at [0] is answer/2.

g. The predicate at [1]is none.

me a0 o

Some features that are true of the ninth parse item are:

(19) The first word in the queue is state.

The second word in the queue is with.
The last action was skip.

The last processed word was the.

The second-to-last processed word was of.
The predicate at [0] is answer/2.

g. The predicate at[i]is capital/2.

™o a0 o

Note that[(18-a)]is a positive clue that the action shiFr-capital(_, _) should come
next, but a negative clue that the action suirr-state(_, _) should not come next.
With([(19-a)} it is the other way around. Features|[(18-d)|and [(19-d)|are the same
for both items, so they are not a particularly strong clue for one vs. the other.
It may however be a negative clue against a skip action, because the is typically
followed by a noun, and nouns typically introduce predicates.

Parser learning (see below) is figuring out which features are strong/weak
positive/negative indicators of which actions, and assigning feature-action pairs
(f,a) high/low positive/negative weights accordingly. The model provides a
weight function w such that w({f, a)) returns a number. An item j is then scored
based on the features that are true of its predecessor i and the action a that was
taken to get from i to j. Specifically, the local score of j is 3 ; ¢ e o s W({f, 0))-
The global score of j is the sum of the local scores of all items leading up to it, in-
cluding j itself. And the global score is what is used to determine which items
may stay in the beam, and to select the final winning MR at the end.

Finally, a word about how we find the features that are true for a given item:
we use feature templates. For the example features in [(18)]and [(19)} we used the

12



following templates:

(20)  a. The first word in the queue is _.
b. The second word in the queue is _
c. The last action was _.
d. The last processed word was _.
e. The second-to-last processed word was _.
f.  The predicate at[0]is _.
g. The predicate at[1is _.
Other Possibilities

What we have defined above is a simple global linear model with sparse fea-
tures, meaning that there are many possible features, only few of which are
usually true of any given item. This approach requires careful definition and
testing of many feature templates to work well. One way to improve it both in
terms of manual labor required and in terms of performance is to use a neu-
ral network with dense features. Instead of manually defining feature templates,
here, we represent words as word vectors (see above) and use a variety of tech-
niques such as convolutional layers, recurrent layers and attention mechanisms
to allow the learning algorithm to figure out the relevant features itself. Pre-
diction of the right action at each step would then be made using a softmax
layer.

2.9 Training Algorithm

Initially, we don’t know what good weights to use are—we need to train the
model first. For GEopar, we will do this by parsing the training data and chang-
ing the weights a bit each time the parser doesn’t arrive at the correct MR, push-
ing it towards making the correct decisions step by step. A sketch of the training
algorithm is given in Algorithm

Other Possibilites

Depending on the model used (e.g., linear vs. log-linear vs. neural), training
algorithms differ somewhat. One major topic we have not addressed so far is
lexicon learning, which in many semantic parsers is interleaved with parser
learning: starting out with an initial candidate lexicon, the parser alternates
between training the weights, introducing new lexical entries and discarding
lexical entries that do not seem useful.

210 Experimental Setup

As for all machine learning experiments, the ultimate goal is to have the system
come up with the correct answers for completely new data so it can be applied
to tasks in the real world. To simulate “new” data, we set a part of the data we
have aside as fest data. This is the data we will use at the very end to test our
semantic parser on and to assess how it would perform on new data. We must
not train our system on the test data, and we should not prematurely evaluate
it on the test data and then make changes to it based on the results. This is
because we cannot do that with unseen real-world data either.
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Algorithm 1 A sketch of the training algorithm.

Input: a number of training NLU-MR pairs (z, y), a lexicon L, a beam size b
Output: a weight function w
Initialize w to be 0 for every feature-action combination (f, a)
for a number of epochs T" do
for each training example (z,y) do
agenda < {((),z,0)}
while agenda contains unfinished items do
agenda’ < all possible successors of items in agenda
Calculate the global score of every item in agenda’
Drop all but the b highest-scoring items and the highest-scoring
finished item from agenda’
if none of the items in agenda’ is correct then
break > early update
else
agenda < agenda’
end if
end while
i* < the item in agenda with the highest global score
i’ < the correct item in agenda with the highest global score
for every possible feature-action combination (f, a) do
w((f,a)) < w({f,a))— the number of times (f, a) occurs in the his-

tory of ix
w((f,a)) < w({f,a))+ the number of times (f, a) occurs in the his-
tory of ¢/ > perceptron
update
end for
end for
end for

data

N

test data  training data

PN

validation data  training data proper

Figure 2: Splitting the data
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The rest of the data is our training data in the broad sense. It is usually
further subdivided into a larger set, the training data proper, and a smaller
set, the validation data or development data. We can then train our system on the
training data proper, evaluate it on the the validation data, make changes to it,
train again and evaluate again to see if the changes were beneficial. Figure
shows an overview.

Especially if you have little data, it makes sense to perform the split between
training data proper and validation data in multiple different ways (called folds),
setting a different part of the training data aside as validation data each time.
Training and validation is then performed separately for each fold, and the re-
sults are averaged.
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