1 Changelog
* 27.05.2021: Fixed Eq. [T} RE case
* 27.05.2021: Fixed Eq.|3|(the equation in the lecture slides is incorrect)

* 31.05.2021: Added an extended description of the equations for the dynamic oracle (for the arc-eager

system) in Sec.

19.07.2021: Fixed two instances where it said “arc-standard” but should say “arc-eager”.

2 Arc-eager parser

We focus on the arc-eager parser, for which a static oracle is defined in Sec.[2.1)and a dynamic oracle is defined
in Sec. We assume the version of the arc-eager parser based on the following rules (or transitions):

e iana B LY

RAg: (o|i|j,(;|j4]$ﬁ{'<?)j,k'>}> Al jK) e

RE : % 30 i k) € A
0,18, A

SH : Eali,l%f\;

The horizontal line is used instead of = to separate the premise from the conclusion for the sake of read-
ability. The left-arc (LA) transition has the precondition that i # 0 because the first word of the input
sentence is assumed to be the dummy root. It also requires that =3, ;/(i’,i,k’) € A, i.e., that the dependent
i of the arc i « j being created does not yet have a head specified in A (if it had, applying LA would break
the single-head property of dependency trees). The right-arc (RA) transition has a similar precondition
(=3yx(i’,j, k") € A), which is actually redundant because no words in the buffer (and j is in the buffer)
can have a head speciﬁedﬂ Finally, the reduce transition (RE) has the precondition that the word being
reduced from the stack already has a head specified (3;/4(i’,i,k’) € A). The shift transition (SH) apparently
has no preconditions, but in reality it has one implicit precondition: the buffer must be not empty (i|).
Other rules similarly have such implicit preconditions: LA and RA require that both stack and buffer are
non-empty, and RE that the stack is non-empty.

2.1 Static oracle

A static oracle for the arc-eager parser specifies the next transition to take for a given parsing configuration.
Let c = (oli, j|3,A) be a conﬁguratiorﬂ and T be the gold tree. The oracle is then defined as follows:

LAy i—jinT
o T) = RA; i—jinT o
" IRE Avejin TATpp(ii k) €A

SH otherwise

IWhen a word is attached as dependent to another word it is either discarded completely (LA) or moved from the buffer to the
stack (RA). Moreover, none of the rules allows to move a word from the stack back to the buffer (in contrast with e.g. the online
reordering system, where swap makes this possible). Hence, a word which is still in the buffer cannot have a head specified. Similarly,
the precondition of the target word not having a head is redundant in the arc-standard transition system for both LA and RA.

%In a slight abuse of notation, we assume that i is undefined if the stack is empty and that j is undefined if the buffer is empty.
Note that for the sake of consistency with the rest of this document we follow a slightly different notation than in the lecture (slide 6).

https://user.phil.hhu.de/~waszczuk/teaching/hhu-dp-su21/lecture7/slides7.pdf

So, for instance, LA should be selected if there is a left arc i < j in the gold tree, and RE if there is a word
v on the left of i directly connected with j in T (provided that neither LA nor RA applies — the individual
cases are considered in order from LA to SH).

The above defined oracle is correct in the sense that, given projective dependency tree T, it allows to
derive a sequence of configurations and transitions (starting from the initial configuration) which recon-
structs T precisely. Additionally, it is deterministic, i.e., it only allows to derive a single gold transition
sequence (even when many exists which reconstruct T!), and incomplete. The latter means that the oracle
only ,,makes sense” for the configurations which make part of the gold transition sequence. This leads to
suboptimal behavior which is exemplified below and contrasted with the behavior of a dynamic oracle.

2.1.1 Example

Let the input sentence be ROOT He sent her a letter . and the corresponding gold tree be the one from Fig.
In what follows we ignore the labels of the arcs for simplity. The transition sequence determined by the

ROOT He sent her a letter .

Figure 1: Example tree

static oracle (Eq.[1]) is then:

ROW TRANSITION STACK BUFFER ARCS
1 [ROOT] [He sent her a letter .] 0
2 SH [ROOT He] [sent her a letter .]
3 LA [ROOT] [sent her a letter .] +(He « sent)
4 RA [ROOT sent] [her a letter .] +(ROOT — sent)
5 RA [ROOT sent her] [a letter .] +(sent — her)
6 SH [ROOT sent her a] [letter .]
7 LA [ROOT sent her] [letter .] +(a « letter)
8 RE [ROOT sent] [letter .]
9 RA [ROOT sent letter] [.] +(sent — letter)
10 RE [ROOT sent] []
11 RA [ROOT sent .] (] +(sent — .)

While it allows to retrieve all the arcs, it is not the only such sequence:

ROW TRANSITION STACK BUFFER ARCS

1 [ROOT] [He sent her a letter .] 0
2 SH [ROOT He] [sent her a letter .]
3 LA [ROOT] [sent her a letter .] +(He « sent)
4 RA [ROOT sent] [her a letter .] +(ROOT — sent)
5 RA [ROOT sent her] [a letter .] +(sent — her)
6 RE [ROOT sent] [a letter .]
7 SH [ROOT sent a] [letter .]
8 LA [ROOT sent] [letter .] +(a « letter)
9 RA [ROOT sent letter] [.] +(sent — letter)
10 RE [ROOT sent] []
11 RA [ROOT sent .] (] +(sent — .)

In this sequence, her is reduced earlier from the stack and the transitions differ in rows 6, 7 and 8. Yet the
resulting set of arcs is the same (see the last column of the table). A static oracle does not account for such
spurious ambiguity.

Moreover, a static oracle is suboptimal when we consider the possibility of the system performing erro-
neous transitions during parsing. Let’s say the parser (incorrectly) decides to shift her instead of attaching
it to sent as indirect object, as shown in Tab.|l} From this moment on, her cannot become a right-dependent

ROW TRANSITION STACK BUFFER ARCS
4 RA [ROOT sent] [her a letter.] +(ROOT — sent)
5 SH [ROOT sent her] [aletter .]

Table 1: Incorrect transition

of any other word on the stack anymore. We could still make it a left-dependent of some word in the buffer,
but this is not licensed by the static oracle, which only allows to make an arc between two words if it is
present in the gold tree. Moreover, it is not possible to reduce it anymore either, since it doesn’t have a
head specified, which is a precondition of applying the RE transition in the first place! All this leads to an
arguably very poor continuation, with only 3 our of 6 arcs recovered (see Tab.[2). Note in particular the two

ROW TRANSITION STACK BUFFER ARCS
5 SH [ROOT sent her] [a letter .]
6 SH [ROOT sent her a] [letter .]
7 LA [ROOT sent her] [letter .] +(a « letter)
8 SH [ROOT sent her letter] []
9 SH [ROOT sent her letter.]]

Table 2: Error propagation

last transitions, where RE is not possible since the top element of the stack (resp. her and letter) is headless
(cf. the precondition of RE in Sec. 2).

It is thus questionable if training the classifier to always model the static oracle is the best idea, as this
can make the system more susceptible to error propagation.

2.2 Dynamic oracle

A dynamic oracle allows to alleviate both issues mentioned within the context of the static oracle (see
Sec. . On the one hand, a dynamic oracle allows to account for the spurious ambiguity, i.e., the fact
that there may be many different transition sequences which allow to reconstruct the gold tree. On the
other hand, it’s complete, i.e. it provides the best (or optimal) transition(s) to follow for every configuration
reachable from the initial configuration, whether it’s a part of the gold transition sequence or not. A transi-
tion ¢ is optimal for a configuration c if (at least) one of the best dependency trees (i.e. the trees most similar
to the gold tree) reachable from c is still reachable from ¢(c). In particular, if the gold tree is reachable from
¢, t is optimal iff it is still possible to reconstruct the gold tree after applying ¢ to c.

The concept of dynamic oracle is general and applies to other transition systems as well, but we focus
here on the dynamic oracle for the arc-eager system only.

For example, let ¢ = ([ROOT sent her], [a letter .], {He < sent, ROOT — sent,sent — her}) and T be the
tree from Fig. |1 While, according to the static oracle, SH should be performed at this point, both SH and
RE are clearly optimal as both allow to reconstruct the entire gold dependency tree, as shown in Sec.
Now let’s consider ¢ = ([ROOT sent her], [a letter .|, {He « sent, ROOT — sent}) from Table (1| where her is
incorrectly shifted to the stack. As mentioned above, by that point it is no longer possible to restore the
arc sent — her, but this doesn’t mean that the transition sequence from Table 2| (determined by the static
oracle) is the best we can do. Indeed, an alternative sequence of transitions presented in Tab. |3|allows to
restore 5 out of 6 arcs from the tree in Fig. |1} Since this is the best we can do, the subsequent transitions LA
SH LA RA RE RA are all optimal. But is that the only option? Not really! Another one is shown in Tab.

ROW TRANSITION STACK BUFFER ARCS
5 SH [ROOT sent her] [a letter .]
6 LA [ROOT sent] [a letter .] +(her « a)
7 SH [ROOT sent a] [letter .]
8 LA [ROOT sent] [letter .] +(a « letter)
9 RA [ROOT sent letter] [.] +(sent — letter)
10 RE [ROOT sent] []
11 RA [ROOT sent .] [+(sent — .)

Table 3: Error recovery

where her gets attached to letter instead. Therefore, both LA and SH are optimal w.r.t. the configuration in

ROW TRANSITION STACK BUFFER ARCS
5 SH [ROOT sent her] [a letter .]
6 SH [ROOT sent hera] [letter .]
7 LA [ROOT sent her] [letter .] +(a « letter)
8 LA [ROOT sent] [letter .] +(her « letter)
9 RA [ROOT sent letter] [.] +(sent — letter)
10 RE [ROOT sent] []
11 RA [ROOT sent .| 11 +(sent — .)

Table 4: Error recovery — alternative

row 5.

But how do we determine what are the optimal transitions without considering all the possible contin-
uations and checking if a best possible tree is still reachable? Fortunately this is not too difficult in case of
the arc-eager system. First of all, thanks to arc-decomposability of the system (see Sec. [2.3), we can con-
sider all the arcs separately, without having to look at entire trees. More precisely, it is sufficient to verify
that every arc reachable from the current configuration c is still reachable from t(c) to tell that ¢ is optimal.
Furthermore, there is actually a closed formula which makes it easier determine whether a given transition

is optimal or not for a given ¢ = (0li, j|B,A) and gold tree T in the arc-eager systemﬂ

o(c, LA, T) =

o(c,RA, T)=

o(c,RE, T) =

o(c,SH, T) =

false

true

false
true

false

true

false

true

Ayejipi D w V dyepi —w

otherwise

3wealiw‘_j V dyegw—j Vv 3u;eﬁj(_w

otherwise
EIwEJ’Iﬁ l—w
otherwise

3wE(rli W]

otherwise

The formulas above can be interpreted as follows:

(2)

* Eq.[2} Creating the left arc i «— j from the first buffer element j to the top of the stack i is not optimal
if there’s a right arc from i to some word w in the buffer j|§ in the gold tree (,¢jj3 i — w). Creating

3Note that a dynamic oracle is defined as a function of 3 arguments — configuration, transition, and dependency tree — and returns
true iff the transition is optimal within the context of the configuration and the tree (a static oracle, in contrast, takes on input a
configuration and a tree and returns a transition).

i « j would make it impossible to restore i — w, since LA removes i from the stackf_f] Similarly,
creating i < j is not optimal if i <~ w is in the gold tree for some w € g (I¢p i < w) —not only would i
be removed from the stack, but also it would have a head different than w (and in dependency forests
one word cannot have more than one head)

* Eq.[3} Creating the right arc i — j is not optimal if some word w in the stack oli is a dependent of j in
the gold tree (Jy¢4); w < j). This is because, once i — j is created, j is moved to the stack (and cannot
ever go back to the buffer), and it’s not possible to create an arc between two words in the stack, hence
it’s not possible to restore w « j anymore. Besides, i — j is not optimal if j has its head somewhere
else in the stack (3¢, w — j) or the buffer (3,,¢p j < w), since a word can only have one head (either
i or w, but not both).

. Eq. Reducing i from the stack is not optimal if i has a dependent somewhere in the buffer (d,¢jjp i —
w) because, once i is reduced, i — w cannot be restored anymore. We don’t have to verify if i’s head is
determined because by the precondition of RE (see Sec.|2)) it must be. We don’t have to check if all i’s
left dependents are already identified either because, even if there’s some w € ¢ such that w « i is in
the gold tree but not in the predicted set of arcs, it cannot be restored anymore anyway (both w and i
are in the stack in this case), regardless of choosing RE or not.

* Eq.[5 Shifting j to the stack is not optimal if there’s some word in the stack which is connected with
j by an arc (dyeq|i w < j). On the one hand, it can be shown that such an arc cannot be in the set of
predicted arcs yet. On the other hand, shifting j to the stack makes restoring any such arc impossible.
It’s not a problem if there are words in the buffer connected with j in gold tree, though, as it will still
be possible to restore them after performing the shift.

Importantly, all these equations rely on the property of the arc-eager system that none of the transitions
makes it impossible to restore an arc v <> w such that v € 0 and w € p. Put differently, if v <> w is possible
to reach from ¢, it is possible to reach it from ¢(c) regardless of the selected transition ¢.

Let’s get back to the examples in Tab.[3Jand Tab.[4 Let ¢ = ((ROOT sent her], [a letter .], {He « sent, ROOT —
sent) and T be the tree from Fig.

* There’s no arc from her to any of the words in a letter . in Fig. 1| nor is there an arc from any of the
words in letter . to her. Hence, LA is optimal.

¢ There’s an arc from letter to a, thus Hweﬁ j < w. Hence, RA is not optimal.
* RE is not possible because her does not have a head specified.

e There’s no arc between any of the words ROOT sent her on the one hand and a on the other hand.
Hence, SH is optimal.

As a result, we know that LA and SH are the only two optimal transitions for configuration c.

2.3 Arc-decomposability

The arc-eager system is so-called arc-decomposable, which means that the following two properties are
equivalent for a given configuration ¢ and projective tree T:

e There exists a transition sequence t1,...,t; such that f;(...(¢;(c))) reconstructsﬁ all the arcsin T.

* For every arc ain T, there exists t1,...,; such that t;(...(t{(c))) contains a.

4And i — w cannot be in the set of predicted arcs yet either, since the words in the buffer do not have their heads determined. Once
a head of a word is determined, the word is moved to the stack or removed, and it cannot ever get back to the buffer again.

5We don’t have to check if Jyes w — i, because both i and w are in the stack in this case and, therefore, it’s not possible to restore
w — i anyway, regardless of whether i < j is created or not.

6Recall that #(... (1 (c))) is a configuration itself, and its third component is a set of arcs.

This simplifies the task of determining the optimal transition(s) for a given configuration c. Namely, if we
check that every arc reachable from c is still reachable from #(c), then we know that ¢ is optimal[]

7Even if the gold tree T is not reachable from ¢, there’s some projective tree T’ among the set of all reachable trees that is most
similar to T. If we make sure that all the arcs reachable from c are reachable from t(c), we also make sure that all the arcs in T’ are
reachable from #(c), which means (thanks to arc-decomposability) that T itself is reachable from t(c), hence t is optimal. Note also
that there is always at least one optimal transition.

	Changelog
	Arc-eager parser
	Static oracle
	Example

	Dynamic oracle
	Arc-decomposability

